Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996432

RESUMO

Genetic reassortments occurred continuously among multiple subtypes or genotypes of influenza viruses prevalent in pigs. Of note, some reassortant viruses bearing the internal genes of the 2009 pandemic H1N1 (2009/H1N1) virus sporadically caused human infection, which highlights their potential threats to human public health. In this study, we performed phylogenetic analysis on swine influenza viruses (SIVs) circulating in Liaoning Province, China. A total of 22 viruses, including 18 H1N1 and 4 H1N2 viruses, were isolated from 5,750 nasal swabs collected from pigs in slaughterhouses from 2014 to 2016. H1N1 viruses formed four genotypes, which included Eurasian avian-like H1N1 (EA H1N1) and double/triple reassortant H1N1 derived from EA H1N1, 2009/H1N1, and triple reassortant H1N2 (TR H1N2) viruses. H1N1 SIVs with different genotypes and even those within the same genotypes represented different pathogenicities in mice. We further characterized two naturally isolated H1N1 SIVs that had similar viral genomes but differed substantially in their virulence in mice and found that a single amino acid at position 431 in the basic polymerase 2 (PB2) protein significantly affected the viral replication capacity and virulence of these two viruses. Taken together, our findings revealed the diverse genomic origins and virulence of the SIVs prevalent in Liaoning Province during 2014 to 2016, which highlights that continuous surveillance is essential to monitor the evolution of SIVs. We identified a naturally occurring amino acid mutation in the PB2 protein of H1N1 SIVs that impacts the viral replication and virulence in mice by altering the viral polymerase activity.IMPORTANCE The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses.


Assuntos
Aminoácidos/genética , Genótipo , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Vírus Reordenados/genética , Doenças dos Suínos/virologia , Animais , China , Modelos Animais de Doenças , Feminino , Genes Virais/genética , Genoma Viral , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N2/genética , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Análise de Sequência de Proteína , Suínos , Virulência/genética , Replicação Viral , Sequenciamento Completo do Genoma
3.
J Vet Med Sci ; 82(1): 101-108, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31801929

RESUMO

H9N2 is widespread among poultry and humans. Though this subtype is not lethal to either species, it can cause considerable financial losses for farmers and threaten human health. In this study, 10 new H9N2 avian influenza viruses (AIVs) produced by reassortment were isolated from domestic birds in Liaoning Province between March 2012 and October 2014. Nucleotide sequence comparisons indicate that the internal genes of one of these strains are highly similar to those of human H7N9 viruses. Amino acid substitutions and deletions occurred in the HA and NA proteins separately, indicating that all 10 of these isolates may have an enhanced ability to infect mammals. A cross-hemagglutinin inhibition assay conducted with two vaccine strains that are broadly used in China suggests that antisera against vaccine candidates cannot completely inhibit the new isolates. Two of the 10 newly isolated viruses could replicate in respiratory organs of infected BALB/c mice without adaption, suggesting that these isolates can potentially infect mammals. The continued surveillance of poultry is important to provide early warning and control of AIV outbreaks. Our results highlight the high genetic diversity of AIV and the need for more extensive AIV surveillance.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/virologia , Animais , Antígenos Virais/genética , Embrião de Galinha , Galinhas , China/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Camundongos Endogâmicos BALB C , Filogenia , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...